2 resultados para CARDIOVASCULAR RISK

em QSpace: Queen's University - Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy characterized by maternal systemic endothelial dysfunction. While the clinical manifestations resolve soon after delivery, a large body of epidemiological evidence indicates significant long-term maternal risk for cardiovascular disease (CVD) after PE. The mechanisms by which PE and future CVD are associated are unclear, although shared constitutional risk factors likely contribute to the features of endothelial dysfunction characteristic to both. We postulate that PE offers a window of opportunity for the identification of unique markers of dysfunction in the earliest stages of disease that may be used to validate cardiovascular risk screening in the early postpartum period. The studies presented in this thesis provide evidence of changes in circulating factors in women with a recent history of PE. Using blood samples collected within the first year of pregnancy, unique patterns of microRNA expression, enrichment of coagulation system proteins and endothelial progenitor cell dysfunction were described. Many of the described changes appear to be independent of cardiovascular risk. In addition to alterations in circulating factors however, longitudinal postpartum assessments demonstrated that microvascular and cardiac abnormalities were evident in the early periods postpartum after a pre-eclamptic pregnancy. Collectively, the data presented in this thesis reveal that physiological alterations in women with a recent history of PE are not necessarily dependent on clinical parameters of cardiovascular risk, and that resulting dysfunction may be demonstrated within the first year postpartum. Importantly, the biomarkers presented herein are all demonstrated elsewhere in the literature to benefit from lifestyle modification and risk reduction. In closing, the findings of this thesis support a need for cardiovascular risk screening based on obstetrical history, namely after pregnancies complicated by PE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are associated with increased risk of atherothrombotic disease. Lp(a) is a unique lipoprotein consisting of a low density lipoprotein-like moiety covalently linked to apolipoprotein(a) (apo(a)), a homologue of the fibrinolytic proenzyme plasminogen. Apo(a) is extremely heterogeneous in size with small isoforms being independently associated with increased cardiovascular risk. Several in vitro and in vivo studies have shown that Lp(a)/apo(a) can inhibit tissue-type plasminogen activator (tPA)-mediated plasminogen activation on fibrin surfaces, although the mechanism of inhibition by apo(a) remains controversial. Essential to fibrin clot lysis are a number of plasmin-dependent positive feedback reactions that enhance the efficiency of plasminogen activation, including the plasmin-mediated conversion of Glu1-plasminogen to Lys78-plasminogen. Additionally, abnormal fibrin clot structures have been associated with both an increased risk of cardiovascular disease and elevated Lp(a) levels. Similarly, oxidized phospholipids have been implicated in the development of cardiovascular disease, and are not only preferentially carried by Lp(a) in the plasma but have also been shown to covalently-modify both apo(a) and plasminogen. In this thesis, we built upon the understanding of the role of apo(a) in plasminogen activation on the fibrin/degraded fibrin surface by determining that: (i) apo(a) inhibits plasmin-mediated Glu1-plasminogen to Lys78-plasminogen conversion and identifying the critical domains in apo(a) responsible for this effect, (ii) apo(a) isoform size does not affect either the inhibition of tPA-mediated plasminogen activation or the inhibition of plasmin-mediated Glu1-plasminogen to Lys78-plasminogen conversion, (iii) apo(a) modifies fibrin clot structure to form more dense clots with thinner fibers and reduced permeability, modifications that enhance the ability of apo(a) to inhibit tPA-mediated plasminogen activation and (iv) the phosphorus content of apo(a) affects its ability to inhibit tPA-mediated plasminogen activation and the phosphorus content of plasminogen affects its ability to be activated by tPA. By understanding these individual reactions, each of which has the potential to affect the broader fibrin clot lysis process, we have expanded our understanding of the overall effect of Lp(a)/apo(a) in the inhibition of plasminogen activation on the fibrin/degraded fibrin surface and thus broadened our understanding of how Lp(a)/apo(a) may mediate the inhibition of thrombolysis in vivo.